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Abstract

Engineering assessment of slope stability is usually performed using limiting equilibrium analysis. This framework

includes a process of minimization which identifies the critical slip surface and its associated minimal safety factor. The

approach makes sense only if a minimum safety factor exists, i.e. if there is a slip surface for which the safety factor is

smaller than safety factors associated with all other slip surfaces. The present work establishes conditions which

guarantee that slope stability problems have a physically significant minimum. The question of existence of a minimum

is relevant to all slope stability formulations which satisfy equilibrium conditions without a priori assumptions with

respect to the shape of potential slip surfaces. The main purpose of the present work is to ‘‘legitimatize’’ the ap-

proximate, but practically useful, limiting equilibrium technique by placing it on secure foundations.

The present work shows that the restrictions required in order to ensure the existence of a minimum include three,

well motivated, physical elements: (a) Two integral inequality constraints restricting legitimate forms of slip surfaces,

and normal stress functions acting on them. These constraints represent the obvious observation that under usual

conditions slopes fail by moving down and away from the main body of the slope. (b) The strength model (Mohr

envelope), should imply a finite tensile strength. (c) A ‘‘cracking criterion’’ which specifies the consequences (crack

formation) occurring when the soil�s tensile strength is fully mobilized.
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1. Introduction

Engineering assessment of earth slope stability is usually performed using limiting equilibrium analysis.

This framework includes a process of minimization which identifies the critical slip surface ycðxÞ, and its

associated minimal safety factor Fs. The approach makes sense only if a minimum safety factor exists, i.e. if

there is a slip surface for which the safety factor is smaller than safety factors associated with all other slip

surfaces. Classical presentations of slope stability analysis (e.g. Morgenstern and Price, 1965; Janbu, 1973;
and many others); ignore this question, trusting essentially that the existence of a minimum safety factor is

guaranteed by the physical nature of the problem.
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Baker and Garber (1977, 1978) presented a variational approach to slope stability analysis, which

generalized the classical formulations. This formulation has a number of fundamental advantages:

1. Use of variational calculus provides a consistent and practical procedure for identification of the critical
pair fycðxÞ; Fsg. Classical procedures rely on trial and error techniques in order to identify the critical

conditions, and such techniques are not practical when the family of potential slip surfaces is not re-

stricted, a priori, to some simple form (e.g. straight line, circle, spiral, etc.). It can be argued that classical

formulations do not solve the slope stability problem, merely define it.

2. Unlike other presentations, the variational approach does not employ statical assumptions. These as-

sumptions are replaced by minimization of the safety functional with respect to the normal stress distri-

bution rðxÞ acting along potential slip surfaces yðxÞ. This minimization process results automatically

with the most conservative ‘‘statical assumption’’ that is consistent with general principles of limit equi-
librium analysis.

3. Application of the variational approach yields general results which are consistent with well-known plas-

ticity solutions (e.g. in a linear and homogeneous setting critical slip surfaces may be either straight lines

or a log-spirals, and the normal stress distribution along potential slip surfaces satisfies Koiter�s dif-

ferential equation). In a general, non-homogeneous case, or when a non-linear failure criterion is used,

the variational approach yields two coupled first order differential equations controlling the func-

tions fyðxÞ; rðxÞg. These differential equations provide a natural generalization of classical plasticity

results.
4. Numerical results based on this approach were presented by Garber and Baker (1977), Baker (1981) and

Baker and Leshchinsky (1987). For homogeneous slopes, a linear failure criterion, and sufficient tensile

strength to prevent the formation of tension cracks, the results of Baker (1981) are practically identical to

Taylor�s (1937), stability chart. The variational approach is, however, powerful enough to allow the ana-

lysis of such diverse phenomena as formation of tension cracks (Baker, 1981), effects of non-linear failure

criteria (Baker and Frydman, 1983), and three-dimensional effects (Leshchinsky et al., 1985; Baker and

Leshchinsky, 1987).

The variational formulation was criticized by De Josseline De Jong (1980, 1981), who argued that this

analysis results with a stationary value, which has an indefinite character rather than a minimum. Con-

sequently, he concluded that the variational formulation is, in principle, meaningless, despite its apparent

advantages. This conclusion was supported by Castilo and Luceno (1980, 1982). Their argument was based

on a number of counter examples showing that for an arbitrary, but given, slip surface; it is possible to

establish a normal stress function which yields safety factors that are smaller than the ‘‘minimum’’ obtained

by the variational analysis.

In the present work we incorporate some additional physical restrictions into the basic limiting equi-
librium framework, and verify that those restrictions guarantee that the slope stability problem has a well-

defined solution (minimum). These restrictions are implied, without being explicitly stated, in all practical

applications of this methodology, and under usual circumstances they do not change the solution of the

problem (they are non-active constraints).

2. The slope stability problem

2.1. Conventions and definitions

Basic elements of a simple slope stability problem are introduced in Fig. 1, which shows a homogeneous
slope with zero pore pressures, constant unit weight c, and a straight face. H and b are the slope�s height
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and inclination respectively. The problem is formulated in a Cartesian coordinate system ðx; yÞ with the y
coordinate increasing upwards (against the direction of gravity), the positive x coordinate pointing into the

main body of the slope, and the origin located at the toe of the slope (point G). A basic element in limiting

equilibrium analysis is a potential test body ABCDEFGA (Fig. 1), bounded by a slip surface yðxÞ (curve
ABC), a vertical face of an end crack CD, and the part DEFGA of the function Y ðxÞ defining the slope�s
surface. The definition of a test body implies that xf > x0, nðxÞ � Y ðxÞ � yðxÞP 0, and the equality sign may

be realized only at the end points fx0; xfg. Under usual conditions nðx0Þ ¼ 0 and nðxfÞ � nf P 0 where nf is

the depth of the end crack. aðxÞ is the inclination of the slip surface at x, and frðxÞ; sðxÞg represent the

distributions of normal and shear stresses along yðxÞ.
The following sign convention is used for stress components frðxÞ; sðxÞg acting along yðxÞ:

(a) Positive normal stresses represent compression.

(b) Positive shear stresses produce a counter clockwise rotation about any point O located inside the dif-

ferential element abc in Fig. 1. This differential element is located inside the test body, and it is attached

to the potential slip surface yðxÞ. This is the conventional soil mechanics sign convention used with

Mohr circles.

The sign convention for force components and moments is:

(a) A positive force component points to the positive direction of the corresponding coordinate.

(b) All moments are taken about the toe of the slope (point G). Moments are positive if they produce ro-

tation from the positive direction of the x coordinate towards the positive y coordinate.

As their name implies, limiting equilibrium procedures utilize essentially two basic elements:

(i) Equilibrium conditions for a test body.

(ii) A limiting relation between normal and shear stress acting along a given slip surface. This relation in-

troduces also the notion of safety factor with respect to shear strength.

These classical elements are discussed in the following subsections.

2.2. Equilibrium equations

Let fT;Ng be the resultants of the shear and normal stress distributions acting along a particular slip

surface yðxÞ. fMT;MNg are the moments of T and N. fTH;TVg and fNH;NVg are the horizontal and

vertical components of fT;Ng. W is the weight of the test body and MW is the moment of this weight. y0ðxÞ
is the derivative of yðxÞ. Explicit expressions for the above-defined quantities are summarized in Eqs. (1).

Fig. 1. Basic elements of a schematic slope stability problem.
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TH ¼
Z xf

x0

sðxÞdx; TV ¼
Z xf

x0

sðxÞy0ðxÞdx; MT ¼
Z xf

x0

sðxÞ½y 0ðxÞx� yðxÞ
dx ð1:1Þ

NH ¼
Z xf

x0

rðxÞy 0ðxÞdx; NV ¼
Z xf

x0

rðxÞdx; MN ¼
Z xf

x0

rðxÞ½xþ y0ðxÞyðxÞ
dx ð1:2Þ

W ¼ c
Z xf

x0

nðxÞdx; MW ¼ c
Z xf

x0

xnðxÞdx ð1:3Þ

Equilibrium conditions for the test body shown in Fig. 1 are:

TH ¼ NH; TV ¼ W�NV; MT ¼ MW �MN ð2Þ

Eqs. (1) and (2) are valid only if yðxÞ is a uni-valued function of x. This restriction excludes from con-

sideration slip surfaces resulting with formation of overhanging cliffs. Formation of overhanging cliffs

requires considerable tensile strength which most soils do not possess, and such failure mechanisms are not

considered in the present work. Restricting attention to uni-valued slip surfaces implies that
�p=26 aðxÞ6 p=2; the limiting relation a ! �p=2 can be realized only at x0, and a ! p=2 can occur only at

xf . The vertical face CD of the end crack (Fig. 1) violates the requirement that yðxÞ is uni-valued, and

therefore this face cannot be considered as a part of the slip surface. The unknown stress functions

frðxÞ; sðxÞg are defined only along yðxÞ, and the face CD of the end crack is assumed to be stress free. In

principle it is possible to impose any stress distribution along CD (e.g. the effect of water standing in the

crack), but these stresses must be known a priori, and they are not included in the unknown functions

frðxÞ; sðxÞg.

2.3. The limiting equilibrium hypothesis and its complementary interpretation

The equilibrium conditions in Eq. (2) include three unknown functions fyðxÞ; rðxÞ; sðxÞg. All limiting

equilibrium procedures eliminate the function sðxÞ by the assumption:

sðxÞ � SðxÞ
F

¼ S½rðxÞ

F

ð3Þ

In this equation F is an unknown number called the safety factor with respect to shear strength, SðrÞ is a
strength function specifying the dependence of shear strength on normal (in general effective) stresses, and

SðxÞ � S½rðxÞ
 represents the distribution of available shear strength along yðxÞ. Physically SðrÞ can be

identified with the upper branch of a (generally non-linear) Mohr envelope. This identification implies that

SðrÞ is a non-negative function satisfying SðrÞP 0. The safety factor is a measure of stability, with F ¼ 1

implying a state of failure in which existing shear stresses are equal to the available shear strength. Most

practical limiting equilibrium procedures utilize the linear Mohr–Coulomb failure criterion, SðrÞ � C þ wr
where w ¼ tanð/Þ, and fC;/g are the cohesion intercept and angle of internal friction respectively. This
criterion implies the well-known restriction rðxÞP�t
 where t
 ¼ C=w. In the legitimate range of r values

ðrP � t
Þ, both SðrÞ and SðxÞ ¼ S½rðxÞ
 are obviously non-negative.

In addition to its role as a definition of the safety factor with respect to strength, Eq. (3) implies that the

distributions of shear stress sðxÞ and available shear strength SðxÞ are geometrically similar, being ‘‘scaled

versions’’ of one another. In particular, combining the observation that SðxÞ is non-negative and the fact

that F is a constant independent of x, Eq. (3) implies that sðxÞ has a constant sign along the entire slip

surface. For positive F values Eq. (3) results with sðxÞP 0. In that case the sign convention with respect to

shear stresses implies that shear stresses along yðxÞ are directed from A to C (Fig. 1). The assumption that
sðxÞ and SðxÞ are geometrically similar is physically justified only at failure when sðxÞ ¼ SðxÞ and F ¼ 1.
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Nevertheless, limiting equilibrium procedures which are applied to both stable and unstable situations are

all based on Eq. (3). The significance of this observation may be seen by rewriting Eq. (3) in the form:

SmðrÞ � SðrÞ=F ð4:1Þ

sðxÞ ¼ Sm½rðxÞ
 ð4:2Þ

Eq. (4.1) defines a ‘‘mobilized’’ strength function SmðrÞ ¼ Cm þ rwm, in which Cm ¼ C=F and

wm ¼ tanð/mÞ ¼ w=F are mobilized strength parameters. It is possible to consider SmðrÞ as a strength

function characterizing a fictitious material with reduced strength. In the framework of this interpretation

Eq. (4.2) is a failure condition for this fictitious material. Eqs. (4) indicate that limiting equilibrium pro-
cedures deal actually with the state of failure of a fictitious material characterized by the mobilized strength

function SmðrÞ rather than with the real problem which is characterized by the actual strength function

SðrÞ, and does not necessarily corresponds to a failure state. One may legitimately wonder if such an ar-

tificial problem has relevance to real life engineering situations (the long and successful history of this

methodology implies that this is so). However, this is not the issue in the present work; we accept this

situation as a ‘‘given’’; and will utilize its consequences. For ease of reference we call the interpretation

associated with Eqs. (4) ‘‘the complementary interpretation’’. The following observations are relevant with

respect to this interpretation:

(1) Eqs. (3) and (4) are formally equivalent, and the complementary interpretation does not change the

basic assumption of limiting equilibrium.

(2) The basic assumption of limiting equilibrium (Eq. (3)), relates only two stress components fr; sg.
Knowledge of these components does not allow definition of the state of stress (Mohr circle), at diffe-

rent points along yðxÞ.
(3) The complementary interpretation implies that Mohr circles are tangential to the mobilized strength

envelope SmðrÞ. Combined with given values of fr; sg, this tangency requirement is sufficient to define
the complete state of stress along potential slip surfaces. As a result, the complementary interpretation

allows incorporation of various physical considerations into the formal limiting equilibrium framework

(e.g. Baker et al., 1993), and it will play a central role in the present work.

The notions of mobilized strength parameters and envelopes are well known; however the implications

of the complementary interpretation were not fully utilized in previous formulations of limiting equilibrium

slope stability analysis.

2.4. The limiting equilibrium equations

Combining Eqs. (2) and (3) results with:

TH ¼ TH

F
¼ NH; TV ¼ TV

F
¼ W�NV; MT ¼ MT

F
¼ MW �MN ð5:1Þ

where

TH ¼
Z xf

x0

S½rðxÞ
dx; TV ¼
Z xf

x0

S½rðxÞ
y0ðxÞdx; MT ¼
Z xf

x0

S½rðxÞ
½y0ðxÞx� yðxÞ
dx ð5:2Þ

Eq. (5.1) combine the two basic elements utilized in limiting equilibrium slope stability analysis (equilibrium

equations for a test body, and definition of safety factor), and they will be referred to as the basic equations
of limiting equilibrium. These equations depend on two unknown functions fyðxÞ; rðxÞg and the unknown

constant F . Recalling that strength functions are non-negative, the first of Eq. (5.2) implies TH P 0.
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Experience with conventional limit equilibrium analysis shows that there exist many different triplets

fyðxÞ; rðxÞ; F g satisfying Eq. (5.1). Let f~yyðxÞ; ~rrðxÞg be a pair of functions satisfying those equations for some

value of F . We call such a pair a potential (or legitimate), failure mechanism. The basic slope stability

problem is to find the critical pair f~yycðxÞ; ~rrcðxÞg which is associated with the minimum value, Fs, of F
(assuming that this problem has a solution, i.e. that a minimum exists). Stated differently, the equations of

limiting equilibrium associate an F value with each pair of legitimate functions f~yyðxÞ; ~rrðxÞg; i.e. they define

a functional relation of the type F ¼ bFF ½~yyðxÞ; ~rrðxÞ
. We call bFF ½~yyðxÞ; ~rrðxÞ
 the safety functional. It is not

possible to establish an explicit expression for this functional, however, for the present purpose, the im-

portant point is only that this functional exists.

The discussion up to this point involved classical elements only, common to all existing limiting equi-

librium procedures. Conventional procedures introduce also various geometrical and statical assumptions

that are not relevant for the present purpose. In the following sections we introduce two additional elements
(the classification inequalities, and the cracking hypothesis), which are assumed, but not explicitly stated, in

all applications of limiting equilibrium slope stability analysis.

3. The classification inequalities

Consider the simple unloaded slope stability problem shown in Fig. 2a. It is natural to assume that at

failure (of the artificial material defined by mobilized strength function SmðrÞÞ, a certain test body moves
down (in the direction of gravity), and to the left (away from the main body of the slope). Eqs. (5) show that

the forces fTH;TVg are proportional to the mobilized strength SmðxÞ. Strength is mobilized in response to

movement. Therefore the forces fTH;TVg should be directed counter to directions of the expected move-

ments as shown in Fig. 2a. The present sign convention for force components implies therefore that

fTH;TVg should be non-negative, and it is possible to write:

TH ¼
Z xf

x0

Sm½rðxÞ
dxP 0; TV ¼
Z xf

x0

Sm½rðxÞ
y0ðxÞdxP 0 ð6Þ

The following comments are appropriate with respect to Eq. (6):

(a) Strictly speaking the considerations leading to Eq. (6) are valid only at failure, while limiting equili-

brium analysis is applied to both stable and unstable configurations. However, the complementary inter-
pretation implies that limiting equilibrium analysis actually deals with a state of failure of an artificial

material, and within the framework of this interpretation the above inequalities are valid for all F
values.

Fig. 2. Modes of failure: (a) active problem; (b) passive problem and (c) deep slip surface.
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(b) Eq. (6) involve integrals of SmðxÞ, i.e. these equations represent global restrictions. The global nature of
these relations implies that the assumptions with respect to directions of movements refer to global or

‘‘average’’ movements of the test body. Individual points in this body may move in different directions

(e.g. point X in Fig. 2c probably moves upward, opposite to the direction of the global vertical move-
ment).

(c) We are not aware of a single practical solution of a slope stability problem violating inequalities (6). In

the present work those inequalities were motivated by considerations related to movements. However,

in general, limiting equilibrium analysis does not deal with movements or deformations, and from now

on we will consider Eq. (6) as postulates, justified only by their consequences.

Applying a sufficiently large external force P to the face of the slope, it is possible to create a ‘‘passive’’

condition in which failure occurs with a test body moving upwards and into the slope (Fig. 2b). In passive
problems the resultants fTH;TVg must point downwards and outwards. In terms of the present sign

convention, such forces are negative, and passive problems are characterized by fTH 6 0;TV 6 0g. Con-
ventional slope stability problems have an ‘‘active’’ character of the type shown in Fig. 2a. Both active and

passive problems are obviously legitimate, but since a test body cannot move up and down at the same

time, these two problems can not be considered simultaneously. Thus, inequalities specifying the sign of the

terms fTH;TVg define the type of problem under consideration, i.e. these inequalities classify stability

problems, and they will be called ‘‘the classification inequalities’’. Mixed problems, in which

fTH 6 0;TV P 0g or fTH P 0;TV 6 0g are in principle possible, but their physical significance is not ob-
vious, and they will not be considered in the present work.

So far we have discussed active and passive stability problems; however the same consideration can be

applied to each legitimate pair f~yyðxÞ; ~rrðxÞg which satisfies the equations of limiting equilibrium (5). A given

pair f~yyðxÞ; ~rrðxÞg determines a unique value for fTH;TVg, and according to the sign of these quantities, such

a pair describes active, passive, or mixed failure mechanism. In general, the class of legitimate functions

f~yyðxÞ; ~rrðxÞg contains members associated with all four possible combinations for the signs of fTH;TVg.
However, when solving an active problem one needs to consider only active failure mechanisms, and Eq. (6)

become integral inequality constraints that exclude from consideration failure mechanisms which are not
relevant to solution of an active problem.

The present work deals mainly with conventional, ‘‘active’’ slope stability problems. It is instructive

however to discuss, briefly, some characteristics of the passive case. The first of Eq. (5.1) can be written as

F ¼ TH=TH. When discussing Eqs. (5) it was established that TH P 0. As a result, the only way to obtain

TH 6 0 (as required by the definition of passive problems), is to admit a negative safety factor. This ap-

parently strange result is a consequence of the presently adopted sign convention with respect to forces and

shear stresses. When solving a passive problem it is obviously more convenient to change the sign con-

vention in order to deal with positive safety factors. However, at this stage we are dealing with the general
structure of limiting equilibrium problems, and in order to investigate this structure it is necessary to adhere

to a single sign convention under all situations. The sign of the safety factor is related to the direction of

shear stresses along the slip surface; for negative F values Eq. (3) delivers negative shear stresses, and the

sign convention implies that these stresses are directed from C to A (Fig. 1) as must be the case in a passive

problem. A large negative value of F means a high level of safety for a passive failure mechanism. Con-

sequently, identification of the critical condition for a passive problem requires maximization (rather than

minimization), of the safety functional. This result is consistent with the situation encountered in earth

pressure theory in which active and passive problems are associated with different types of extremization.
In order to illustrate the significance of the classification inequalities in a simple setting, consider the

problem in Fig. 3a. This figure shows a slope loaded by a single horizontal force PH, acting on the slope�s
surface. For the present purpose, it is convenient to consider a class of simple failure mechanisms with yðxÞ
taken as straight lines through the toe, and rðxÞ as the triangular distribution ABC shown at the bottom of
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Fig. 3a. The functions rðxÞ are defined in terms of two undetermined parameters rd and xd representing the

magnitude and location of the maximum normal stress acting on the slip surface. For each inclination a of

the slip surface it is possible to solve the three equations of limiting equilibrium (5), and establish the

unknown values fF ; rd; xdg. As a result, each value of a in the range b P aP 0 defines a pair of legitimate

functions f~yyðxÞ; ~rrðxÞg satisfying the equations of limiting equilibrium, and the safety functionalbFF ½~yyðxÞ; ~rrðxÞ
 degenerates into a one dimensional function F ðaÞ. The class of failure mechanisms obtained
this way is probably not critical, but it is legitimate, being included in f~yyðxÞ; ~rrðxÞg.

Solving the equations of limiting equilibrium for F using a as a parameter it is not difficult to verify that

the function F ðaÞ is given by:

F ðaÞ ¼ CxfðaÞð1þ tan2ðaÞÞ þ w½WðaÞ þ PH tanðaÞ

WðaÞ tanðaÞ � PH

ð7:1Þ

where

xfðaÞ ¼
H

tanðaÞ and WðaÞ ¼ cH 2

2

1

tanðaÞ

�
� 1

tanðbÞ

�
ð7:2Þ

Fig. 3c is a plot of F ðaÞ evaluated for C ¼ 10 kPa, / ¼ 30�, c ¼ 20 kN/m3, H ¼ 10 m, b ¼ 45� and a
horizontal external line force, PH of 400 kN/m applied at H=3. It is possible to verify that for this input

(a) (b)

(c)

Fig. 3. Active and passive solutions: (a) failure mechanisms; (b) force polygons and (c) the stability function F ðaÞ.
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information each value of a results with a legitimate normal stress distribution, satisfying rd P 0 and

xf P xd P 0. For the present purpose, the significant feature of Fig. 3c is the discontinuous nature of the

function F ðaÞ, which at a ffi 31� approaches �1. F is positive in the range 06 a6 31�, and the force

polygon (b1) in Fig. 3b shows that both TH and TV are positive. Consequently, a values in the range
06 a6 31� are associated with active failure mechanisms. The function F ðaÞ delivers negative F values in

the range 31�6 a6 b, and the force polygon (b2) shows that this range corresponds to passive failure. The

value a ffi 31�, at which the function F ðaÞ is discontinuous, is the boundary between active and passive

failure mechanisms. The force polygon (b3) shows that at this boundary T (and therefore also fTH;TVg),
are equal to zero, i.e. the discontinuity in Fig. 3c is associated with the boundary of the classification in-

equalities (6). The discontinuity at a ffi 31� is a consequence of the fact that safety factors are ratios of

‘‘resisting’’ to ‘‘driving’’ forces, and such ratios tend to �1 when ‘‘driving’’ forces are equal to zero. The

notions of ‘‘resisting’’ and ‘‘driving’’ forces cannot be quantified (every force has both driving and stabi-
lizing effects), and these notions are used here only in order to explain the form of the function F ðaÞ.

Failure mechanisms defined in Fig. 3a are legitimate, (i.e. they belong to the class of legitimate functions

f~yyðxÞ; ~rrðxÞg satisfying the equations of limiting equilibrium (5)). Consequently, this figure shows that by

itself the safety functional is unbounded (ranging from plus to minus infinity), and it does not have a global

minimum or maximum. However; restricting attention to active stability problems, Fig. 3c shows that the

function F ðaÞ has a well-defined local minimum, occurring at a stationary point of this function. Similarly,

restricting attention to passive problems, the function F ðaÞ has a maximum (in the limited class of failure

mechanisms defined in Fig. 3a this maximum occurs at the boundary a ¼ b, not at a stationary point, but
this is not essential). Fig. 3 illustrates why it is necessary to use the classification inequalities in order to

distinguish between active and passive stability problems. Without these inequalities, even the degenerate

form F ðaÞ of the safety functional bFF ½~yyðxÞ; ~rrðxÞ
 is unbounded; it does not have a minimum; so formally the

limiting equilibrium problem does not have a solution. This discontinuity of bFF ½~yyðxÞ; ~rrðxÞ
 was not con-

sidered in previous formulations of the problem, and it is responsible for most of the confusion related to

the conceptual validity of the variational approach.

The discontinuity of bFF ½~yyðxÞ; ~rrðxÞ
 is not important for practical applications of the limiting equilibrium

approach since it is associated with F ! �1, which corresponds to a state of absolute safety. However, the
indefinite results obtained by De Josseline De Jong (1980) are probably related to the fact that without the

restrictions provided by the classification inequalities, the safety functional bFF ½~yyðxÞ; ~rrðxÞ
 is unbounded, and
formally, the slope stability problem does not have a solution (minimum). Fig. 3c shows that the classi-

fication inequalities are essential for a proper formal definition of the slope stability problem, but they have

no effect on the solution point (minimum), of this problem (they define merely the region in which the

solution exists), i.e. the classification inequalities are non-active constraints. In the simplified setting con-

sidered in Fig. 3 the classification inequalities resulted in the restriction 06 a6 31� defining a family of

legitimate slip surfaces for the active stability problem. In general however these inequalities constitute a
restriction on admissible pairs fyðxÞ; rðxÞg, not only yðxÞ.

In the following we restrict attention to conventional (active), stability problems. Considering this class

of problems and combining the equation of horizontal equilibrium (first of Eq. (5.1)) with Eq. (6.1) implies

F P 0. Consequently, for active problems the classification inequalities induce a zero lower bound on F
values.

4. Tensile strength and the cracking hypothesis

The Mohr–Coulomb failure criterion implies the well-known restriction r P�t
 where t
 ¼ C= tanð/Þ.
It is natural to interpret t
 as the tensile strength implied by this criterion. The definition of mobi-
lized strength envelopes implies that t
 ¼ C=w ¼ Cm=wm, i.e. all the ‘‘fictitious materials’’ associated with
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different F values have the same tensile strength t
. The actual tensile strength ‘‘t’’ of real soils is usually
much smaller then the t
 value implied by the Mohr–Coulomb strength function, and in the tensile stresses

zone strength functions (Mohr envelopes) of real soils are highly non-linear having the character of the

doted line AE in Fig. 4. The restricted Mohr-Coulomb strength function (line ABED in Fig. 4), provides a

first order approximation of this non-linear behavior. This strength function is defined as SðrÞ ¼ C þ rw,
rP�t, where 06 t6 t
.

Using the complimentary interpretation it is possible to establish the complete state of stress, at each

point along the slip surface as shown in Fig. 4. In particular, it is possible to establish the magnitude of the

minor principal stress r3 and the direction of the minor principal plane h3 as shown in that figure. Con-

sidering the geometry of the Mohr circle in Fig. 4 it is not difficult to verify that:

r3 ¼
1� sinð/mÞ
cos2ð/mÞ

ðr � Cm cosð/mÞÞ ð8Þ

The definition of tensile strength implies that all normal stresses, including r3, must be larger than ð�tÞ.
Combining this requirement with Eq. (8) results in:

rðxÞP�T ð9:1Þ

where

T ¼ T ðC;/; t; F Þ ¼ cosð/mÞ t
cosð/mÞ

1� sinð/mÞ

�
� Cm

�
ð9:2Þ

The following comments are relevant with respect to Eqs. (9):

1. A restricted Mohr–Coulomb strength function is defined in terms of three independent strength para-

meters fC;/; tg.
2. Fig. 4 provides a clear physical interpretation of ft; t
, and Tg; t is the soil�s tensile strength, t
 is the ten-

sile strength implied by the conventional (unrestricted), Mohr–Coulomb envelope; while ð�T Þ is the

magnitude on the normal stress acting on the slip surface when r3 ¼ �t. It is noted that t is a material

property (a given constant), while T depends on F and the three strength parameters fC;/; tg.

Fig. 4. State of stress along potential slip surfaces.
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3. The geometry of Mohr circles in Fig. 4, and the definition of mobilized strength envelopes, imply that

t
 P tP T , and T ¼ t only if t ¼ t
. In that case Eq. (9.1) is reduced to the classical relation

rP�t
 ¼ �C=w.
4. The setting t ¼ t
 is obviously illegitimate in the limiting case of / ¼ 0; implying an infinite tensile

strength, which is definitely an unreasonable proposition for a particulate media like soil. For frictionless

material the inequality rðxÞP�t
 is not restrictive, allowing normal stresses to reach minus infinity.

However, when / ¼ 0, Eqs. (9) are reduced to rðxÞP�T ¼ C=F �t, and this bound is restrictive (finite),

for all legitimate values of ft;C; F g.

In the general / 6¼ 0 case the setting t ¼ t
 is legitimate (although not necessarily realistic), and we will

use this setting. t
 approaches infinity in the particular case of / � 0, and in that case t must be considered

as an independent strength parameter in order to exclude from consideration the unrealistic situation in-
volving soils (a particulate media), with infinite tensile strength. The advantage of the general represen-

tation (9) is that it is valid for all legitimate t values regardless of the magnitude of /.
The limiting case r ¼ �T implies full mobilization of tensile strength, and it is necessary to specify the

implications of this particular physical state. In the present work, it is assumed that satisfaction of the

limiting relation rðxÞ ¼ �T results with formation of a tension crack at x, extending from the slip surface to

the surface of the slope. This assumption will be referred to as the cracking hypothesis.

The cracking hypothesis implies that satisfaction of the limiting condition rðxÞ ¼ �T at some internal

point x0 < x < xf results with an internal tension crack L�CL as shown in Fig. 5. This internal crack sepa-
rates the test body into two independent parts ABCLEGA and CDL�C which interact with each other only

at a single point. The limiting equilibrium approach is based on consideration related to a single test body,

and the two test bodies in Fig. 5 cannot be analyzed simultaneously (within the limiting equilibrium

framework each one of these test bodies may have a different safety factor). Consequently, normal stress

distributions in which the relation rðxÞ ¼ �T is satisfied at an internal point are not legitimate and they

must be excluded from consideration. It is noted that the above argument does not exclude solutions with

multiple tension cracks; however, in the limiting equilibrium framework such solutions are obtained by

solving a sequence of stability problems, each one of which consists of a single test body.
Based on the above considerations r ¼ �T can be realized only at the end points x0 or xf . Restricting

attention to active failure mechanisms excludes the possibility of tension cracks at x0 resulting with

rðx0Þ > �T and yðx0Þ ¼ Y ðx0Þ (active failure mechanisms imply that the test body moves away from the

main body of the slope, and this movement results with closure of a crack located at x0). Therefore r ¼ �T

Fig. 5. Internal cracks.
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can be satisfied only at xf . Combination of the cracking hypothesis and the classification inequalities implies

that in active stability problems yðxfÞ > yðx0Þ (if yðxfÞ < yðx0Þ then the test body will move towards the

crack; resulting with a passive problem, and closure of that crack). This restriction excludes from con-

sideration tensile cracks which are deeper than the total height of the slope. For the present purpose
(derivation of sufficient conditions for existence of a minimum in slope stability problems), the most im-

portant implication of the cracking hypothesis is that it allows the condition r ¼ �T to occur only at ðxfÞ.
In order to incorporate the above considerations into the general framework, it is convenient to consider,

simultaneously, the system of inequalities yðxÞ6 Y ðxÞ, rðxÞP�T , and �p=2 < aðxÞ < p=2 which follow

from the geometrical definition of the test body, existence of tensile strength, and the requirement that the

slip surface is a uni-valued function of x. Specifying these inequalities at xf , results with the following

boundary condition which must be satisfied at the end point of the slip surface.

At xf

yðxfÞ ¼ Y ðxfÞ and rðxfÞP�T and aðxfÞ < p=2

or

rðxfÞ ¼ �T and yðxfÞ6 Y ðxfÞ and aðxfÞ < p=2

or

aðxfÞ ! p=2 and rðxfÞP�T and yðxfÞ6 Y ðxfÞ

8>>>>><
>>>>>:

ð10Þ

Eq. (10) will be referred to as the cracking criterion. The first option in this equation corresponds to

the conventionally considered case where there is no end crack. In order for this situation to exist, it is

necessary that the normal stress at xf is not less then the limiting value �T , and the slip surface does

not start forming an overhanging cliff. The second and third options in Eq. (10) show that an end
crack having a non-zero depth will appear if the tensile strength is fully mobilized ðr ¼ �T Þ or if the slip

surface approaches a vertical tangent ðaf ! p=2Þ. An earlier form of this criterion was used by Baker

(1981).

The following implications of Eq. (10) are noted:

(a) Despite its complex appearance, the boundary condition given in Eq. (10) fits naturally into the

general solution procedure implied by the variational slope stability analysis (Baker and Garber, 1978;

Baker, 1981). In those works, it is shown that potentially critical functions fyðxÞ; rðxÞg are solutions of two

first order non-linear differential equations (Euler�s equations). Starting the integration process at some x0,
using the initial conditions fyðx0Þ ¼ Y ðx0Þ;rðx0Þ ¼ r0 > �Tg, the integration process is continued until one

of the three options in Eq. (10) is satisfied. In other words, Eq. (10) is a natural ‘‘stopping rule’’ for in-

tegration of Euler�s differential equations. Satisfaction of Eq. (10) defines the location of xf and the mag-

nitude nf of the end crack. Consequently, nf cannot be assumed a priori, as is commonly done in

conventional slope stability analysis. This solution process automatically eliminates from considerations

normal stress distributions in which the limiting condition r ¼ �T is realize at an internal point, and

r ¼ �T can be realized only at xf . In other words the cracking criterion provides the formal mechanism

ensuring satisfaction of the cracking hypothesis and its implications.
(b) The above considerations implies that rðxÞ > �T at all internal points, and r ¼ �T can be (but not

necessarily is), realized only at xf . These are restrictions defining a class of admissible normal stress

functions. Normal stress functions violating those restrictions correspond to non-physical situations, which

are excluded from considerations by the cracking criterion.

(c) The cracking hypothesis excludes internal cracks by allowing the condition r ¼ �T to occur only at a

single point. Consider however the limiting case of surface failure in which yðxÞ ¼ Y ðxÞ at every point. In

that case, the depth of cracks is zero (i.e. they do not exist); the restriction to a single crack is not significant;

and the cracking hypothesis losses its restrictive power. It is well known that the critical conditions in C ¼ 0
materials are realized for yðxÞ ¼ Y ðxÞ, and this limiting case will be considered explicitly later on.
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5. The general (variational), slope stability problem

The safety functional bFF ½~yyðxÞ; ~rrðxÞ
 is an abstract conceptual relation, without explicit representation, and

it cannot be minimized directly. However, the three equations of limiting equilibrium (5.1), are linear in
ð1=F Þ; it is possible, therefore, to solve one of these equations for F (thus obtaining an explicit represen-

tation for F in terms of fyðxÞ; rðxÞg); considering the remaining two equilibrium conditions as integral

constraints. The basic idea of considering equilibrium equations as constraints in limiting equilibrium

analysis is essentially due to Kopacsy (1955, 1957, 1961). However, Kopacsy tried to formulate a slope

stability problem without using the notion of safety factors, and for no obvious reason he chose to minimize

the weight W of the test body subject to the requirement that the three equilibrium equations are satisfied.

Such a formulation has no obvious physical justification. The process of defining a minimization criterion

by solving one equilibrium equation, treating the other two as constraints, was introduced by Baker and
Garber (1977, 1978).

In the present work we use the equation of horizontal equilibrium (first of Eq. (5.1)) in order to define

the minimization criterion eFF ½yðxÞ; rðxÞ
 � TH=NH; considering the remaining two elements of (5.1) as in-

tegral constraints. This choice is arbitrary, and the same final solution would be obtained using any one of

Eq. (5.1) for the definition of eFF ½yðxÞ; rðxÞ
, treating the remaining two equilibrium conditions as constraints.

This is a consequence of the isoperimetric theorem of variational calculus (Petrov, 1968). ObviouslyeFF ½yðxÞ; rðxÞ
 and bFF ½~yyðxÞ; ~rrðxÞ
 are different functionals.

Combining results, the general (variational) slope stability problem is defined by the following relations:

Fs ¼ min
fyðxÞ;rðxÞg

feFF ½yðxÞ; rðxÞ
g ¼ eFF ½ycðxÞ; rcðxÞ
 ð11:1Þ

where

F ¼ eFF ½yðxÞ; rðxÞ
 � TH½yðxÞ; rðxÞ
=NH½yðxÞ; rðxÞ
 ð11:2Þ
subject to satisfaction of the following system of constraints:

TV ¼ F ðW�NVÞ; MT ¼ F ðMW �MNÞ ð11:3Þ

TH P 0; TV P 0 ð11:4Þ
At all internal points

yðxÞ < Y ðxÞ; rðxÞ > �T ; �p=2 < aðxÞ < p=2 ð11:5Þ
Boundary conditions:

xf > x0; rðx0Þ > �T ; yðx0Þ ¼ Y ðx0Þ; yðxfÞ > yðx0Þ ð11:6Þ

At xf

yðxfÞ ¼ Y ðxfÞ and rðxfÞP T and aðxfÞ < p=2

or

rðxfÞ ¼ T and yðxfÞ6 Y ðxfÞ and aðxfÞ < p=2

or

aðxfÞ ! p=2 and rðxfÞP T and yðxfÞ6 Y ðxfÞ

8>>>>><
>>>>>:

ð11:7Þ

It is convenient to review, briefly, the various elements in Eqs. (11). Eq. (11.1) defines the general

minimization framework characterizing limiting equilibrium problems. The triplet fycðxÞ; rcðxÞ; Fsg con-

sisting of the critical slip surface, normal stress functions and the minimal safety factor is the solution

‘‘point’’ of the above problem. The explicit form of the minimization criterion eFF ½yðxÞ; rðxÞ
 is given in Eq.

(11.2). This form is obtained by solving the equation of horizontal equilibrium for F , and this guarantees
satisfaction of horizontal equilibrium. Eq. (11.3) are integral constraints expressing the requirements of
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vertical and moment equilibrium respectively. Eq. (11.4) are the classification inequalities that define the

conventional, active, slope stability problem. Eq. (11.5) are consistency requirements which follow from the

definition of a test body, existence of tensile strength, and the requirement that the slip surface is a uni-

valued function of x. The first of Eq. (11.6) excludes from consideration degenerated failure mechanisms
consisting of a single point. The second and third of these equations prevent formation of tension cracks at

x0. The fourth of these equations excludes cracks which are deeper than the total height of the slope. Eq.

(11.7) is the cracking criterion discussed previously. Not all of the requirements specified in Eqs. (11) are

independent, but such redundancy does not affect the following arguments.

Eqs. (11) are a general definition of the slope stability problem. Those equations do not include arbitrary

assumptions with respect to the functions fyðxÞ; rðxÞg. All restrictions imposed on those functions follow

from the classification inequalities and the cracking hypothesis which are well motivated physically. It is

noted that all other existing limiting equilibrium formulations employ a priori assumptions restricting the
class of functions fyðxÞ; rðxÞg considered in the minimization stage specified in Eq. (11.1). By their very

nature such restrictions are un-conservative, leading to overestimation of minimal safety factors, and they

should be avoided in order to guarantee safe design.

Faced with a minimization problem including inequalities, one always has two options:

(a) Incorporate these inequalities into the solution process, thus ensuring that the solution triplet

fycðxÞ; rcðxÞ; Fsg is legitimate. This approach increases the dimensionality of the minimization problem;

(inequality constraints are incorporated into analysis by defining slack variables with respect to which it
is necessary to minimize). Therefore this type of formulation may become quite awkward, but some-

times this is unavoidable.

(b) Solve the problem without the inequality constraints, and check if the resulting solution satisfies them

automatically. If the solution satisfies constraints that were not enforced, then these constraints are

‘‘non-active’’. Non-active constraints have no effect on results of the analysis, and this justifies their

omission in the solution stage.

Let fy
ðxÞ; r
ðxÞg be the set of all pairs fyðxÞ; rðxÞg for which TH ¼ TV ¼ 0. This set represents failure
mechanisms located on the boundary (in functions space), of the classification inequalities. Recalling that in

active problems the shear stresses sðxÞ are positive along the entire slip surface; it is not difficult to realize

that the case TH ¼ TV ¼ 0 can be realized only if sðxÞ is identically equal to zero (i.e. the test body is in

equilibrium without any shear stresses). Combining the basic assumption of limiting equilibrium (3), with

the cracking hypothesis (which allows SðxÞ to be zero only at xf ), imply that failure mechanisms located on

the boundary fy
ðxÞ; r
ðxÞg are associated with F ¼ eFF ½y
ðxÞ; r
ðxÞ
 ! �1. Consequently, the classification

inequalities are always non-active constraints, which need not be incorporated into the solution procedure.

Fig. 3c illustrates this conclusion in a simple one-dimensional setting. Considering the creaking criterion
(11.7) as a stopping rule for integrations of Euler�s equation this criterion ensures that the inequalities in

(11.5) are satisfied automatically, and they too become non-active constraints which need not be incor-

porated into the formal solution procedure.

6. Existence of a physically significant solution for active slope stability problems

6.1. General framework of the existence proof

The minimization problem (11) has a minimum by virtue of the fact that subject to the constraints

supplied by the classification inequalities (11.4), the functional eFF ½yðxÞ; rðxÞ
 can deliver only non-negative
values. This, however, is just a formality; the minimum of this problem can be realized either at a stationary

3730 R. Baker / International Journal of Solids and Structures 40 (2003) 3717–3735



point of the minimization criterion, or along the lower bound F ¼ 0 provided by the classification in-

equalities. A result that the minimum value Fs of F is equal to zero would indicate that the problem defined

by Eqs. (11) is not restrictive enough to yield significant solutions, justifying, in effect, the criticism of De

Josseline De Jong (1980, 1981) and Castilo and Luceno (1980, 1982). However, in order to prove that the
solution of this problem is physically significant it is sufficient to show that the lower bound F ¼ 0 is in-

accessible, i.e. that there is no pair of functions fyðxÞ; rðxÞg, satisfying all the requirements in Eqs. (11), for

which F is equal to zero. Combining the result that F cannot be zero, with the observation that eFF ½yðxÞ; rðxÞ

is bounded from below by the value of zero, implies that the problem has a regular minimum which is

realized at a stationary point.

Fig. 6 illustrates the above argument in a simple one-dimensional setting. All four functions shown in

that figure are bounded from below by zero, and therefore they have minima. The minima of the functions

in Fig. 6a and b occur along the lower bound y ¼ 0, and their stationary points correspond to an inflection
and maximum respectively. The function in Fig. 6c does not have an x value at which y ¼ 0, and its

minimum must occur at the stationary point. Fig. 6c shows that the requirement that there is no x value

resulting with y ¼ 0 is a sufficient but not necessary condition for the function yðxÞ to have a minimum at a

stationary point. Sewell (1987) presented similar arguments in a general multi-dimensional setting.

Based on the above argument, a proof that the stability problem (11) is well set, possessing a minimum

which is realized at a stationary point, is reduced to a demonstration that the constraints defining this

problem exclude the possibility that F ¼ 0. This argument depends on two assumptions:

(a) Continuous dependence of F on failure mechanisms fyðxÞ; rðxÞg.
(b) The constraints defining the problem in Eqs. (11) do not exclude all potential failure mechanisms.

Both of these assumptions are obviously satisfied for the present problem. Subject to these two condi-

tions, a proof that F cannot be zero implies that the minimization problem (11) must have at least one

stationary point (it may have more then one), and the minimum of this problem must be realized at one of

the stationary points.

6.2. The basic proof

Consider first the general case in which / 6¼ 0. In that case the assignment t ¼ t
 ¼ T ¼ C=w is legitimate

and it is convenient to start the investigation considering this case. In order to prove that safety factors
cannot approach zero we will assume that F is equal to zero and show that this assumption leads to a

contradiction among the elements of problem (11). Assuming F ¼ 0 implies /m ¼ p=2, wm ! 1 and

Cm ! 1, but the ratio Cm=wm ¼ C=w remains finite, resulting in the mobilized strength envelope

SmðrjF ¼ 0Þ shown as the vertical line AB in Fig. 7a (the notation SmðrjF ¼ 0Þ means that the function

SmðrÞ is associated with F ¼ 0). The complementary interpretation requires that Mohr circles describing the

state of stress along potential slip surfaces must be tangential to SmðrÞ. Fig. 7a shows that when SmðrÞ is the

Fig. 6. Stationary values of functions with lower bounds: (a) inflection; (b) maximum; (c) minimum and (d) minimum at lower bound.
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vertical line AB the tangency requirement can be satisfied only if rðxÞ ¼ �T ¼ �t
 ¼ �c=w ¼ Constant at

all point x along the slip surface. However the cracking hypothesis allows the relation rðxÞ ¼ �T to occur

only at a single point, resulting with a contradiction. As a result, F cannot be equal to zero, implying that
problem (11) has a regular minimum occurring at a stationary point of the functional eFF ½yðxÞ; rðxÞ
. It is
noted that for F ¼ 0 the tangency requirement does not result with a unique state of stress (the radius of the

Mohr circle in Fig. 7a is arbitrary); however we have just proved that F ¼ 0 is impossible, so the non unique

state of stress is not consequential.

Fig. 7b shows that the same argument holds for restricted Mohr–Coulomb envelopes with t < t
. In fact

the same proof is valid for any non-linear strength envelope with a finite tensile strength (Fig. 7c). This

observation is practically significant since it can be shown (e.g. Jiang et al., 2003; Baker, 2002, 2003) that

non-linearity of strength functions may, under certain circumstances, have a very significant effect on re-
sults of slope stability computations.

The above proof depends on the restriction (implied by the cracking hypothesis), that rðxÞ ¼ �T can

occur only at a single point. This requirement is not satisfied in the limiting case of surface failure

ðyðxÞ ¼ Y ðxÞÞ in cohesion-less ðC ¼ 0Þ materials. In this limiting case rðxÞ ¼ �T ¼ �t
 ¼ 0 at all x values,

and in order to complete the above proof it is necessary to verify that eFF ½yðxÞ ¼ Y ðxÞ; rðxÞ ¼ 0
 cannot
be equal to zero. Analysis of this limiting case is however trivial, leading to the result

F ¼ eFF ½yðxÞ ¼ Y ðxÞ; rðxÞ ¼ 0jC ¼ 0
 ¼ tanð/Þ= tanðbÞ where b is the slope inclination. This relation is

usually derived in the framework of the infinite slope approximation, but in fact it is valid also for finite
slopes (e.g. Baker, 1981). The ratio tanð/Þ= tanðbÞ approaches zero only in the limiting case of a vertical

slope. This result suggests that problem (11) is not well set (does not have a minimum), in the particular

case fC ¼ 0; b ¼ p=2g, and this observation is consistent with the well-known result that cohesion-less soils

cannot support vertical slopes.

The methodology of the general proof breaks down in the limiting case of a constant strength function

SðrÞ ¼ C. In this case the mobilized strength function SmðrjF ¼ 0Þ is a horizontal line located at infinity,

Fig. 7. Mobilized failure envelopes associated with F ¼ 0. (a) Case 1: / 6¼ 0, t ¼ t
 ¼ c= tanð/Þ. (b) Case 2: / 6¼ 0, t < t
 ¼ c= tanð/Þ.
(c) Case 3: non-linear failure criterion SðrÞ. (d) Case 4: constant strength function with tension cut-off.
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and such envelope does not imply any restriction on rðxÞ. The source of the difficulty associated with this

case is that strength model SðrÞ ¼ C implies an infinite tensile strength t
. Introducing a tension cut off at

some finite t value (i.e. considering the restricted envelope SðrÞ ¼ C; r P�t), removes the unreasonable

implication of the constant strength model, resulting with the situation shown in Fig. 7d. Applying the
general argument to the mobilized strength function ABF� in Fig. 7d, shows that F cannot be zero, implying

that problem (11) has a minimum also in this case.

The above considerations demonstrate the essential role played by tensile strength in the general

structure of the slope stability problem. The stability of a given slope is affected by both tensile and shear

strengths. Using an unrealistic model which implies an infinite tensile strength the general slope stability

problem (Eq. (11)), is not well set, and it does not have a solution (minimum). However, modifying this

model by the introduction of a finite tensile strength, results with a well set stability problem. The effect of

tensile strength on slope stability was not sufficiently emphasized in previous presentations of the limiting
equilibrium methodology. The above results show that the general constraint rðxÞP�t
 should be con-

sidered as a physical relation representing the limited tensile strength of real soils, rather than merely as a

formal consistency criterion for the Mohr–Coulomb failure criterion (which does not exist in the limiting

case of / ¼ 0 materials).

7. Summary conclusions and discussion

The results derived in the previous section show that when the strength model is associated with a finite

tensile strength, safety factors cannot approach zero. A minimization problem in which the minimization

criterion is bounded from below, and the lower bound cannot be realized, has a regular minimum, which is
realized at a stationary point. This verifies that the general minimization problem (11) is properly set,

possessing a regular minimum which is realized at a stationary point, thus establishing the main purpose of

the present work.

The elements involved in the proof that the slope stability problem has a proper minimum, realized at a

stationary point, are:

(A) The complementary interpretation which implies that Mohr circles describing the state of stress along

potential slip surfaces are tangential to mobilized strength envelopes. This interpretation makes it pos-
sible to define completely the state of stress along potential slip surfaces, thus providing the basis for

definition of tensile strength in a limiting equilibrium framework, and introduction of physical restric-

tions on normal stress functions rðxÞ.
(B) The classification inequalities fTH P 0;TV P 0g which define the active slope stability problem. These

inequalities ensure that the minimization criterion is bounded from below by the value of zero, thus

supplying the basic framework for the existence proof.

(C) The cracking hypothesis which specifies the consequences (crack formation) resulting from com-

plete mobilization of tensile strength. Combined with the definition of a test body this hypothesis ex-
cludes normal stress functions in which the limiting condition rðxÞ ¼ �T is satisfied at more than one

point.

The following general comments are relevant with respect to the results derived in the present work:

(a) The structure of the above proof depends heavily on the cracking hypothesis. This hypothesis loses its

restrictive power in cases where the strength criterion is not associated with a finite tensile strength, and in

such cases it is impossible to prove that the general slope stability problem is well set. Most practical

applications of limiting equilibrium slope stability analysis are associated with the linear Mohr–Coulomb
criterion. This criterion defines the finite tensile strength t
 ¼ C= tanð/Þ at all finite / values, but this
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strength approaches infinity in the limiting case of the constant strength function SðrÞ ¼ C, which is as-

sociated with / � 0. Consequently, the general slope stability problem (Eq. (11)), may be improperly set in

the limiting case of the constant strength model SðrÞ ¼ C. It is impossible to state this conclusion in a more

definitive form because the requirement F 6¼ 0 is a only sufficient but not necessary condition for the slope
stability problem to have a minimum (e.g. Fig. 6d). Stated differently, the slope stability problem may have

a minimum even in this limiting case, but the present proof methodology cannot be used in this degenerated

case. It is noted that the small but finite compressibility of water guarantees that effective / values can never

be identically zero and the limiting case of / � 0 material is not practically significant. However this

limiting case is sometimes used in theoretical studies, and we found it instructive to clarify the consequences

associated with using such a model in the slope stability context.

(b) The present work shows that the original formulation of the variational slope stability problem by

Baker and Garber (1978) was incomplete (it did not included the restrictions A to C above). Without these
constraints the formal slope stability problem is not well set, and it does not have a (global) minimum.

However, the requirements in B are non-active inequalities, and the effect of C is expressed as the boundary

condition (11.7) (the cracking criterion), which was used by Baker (1981). Therefore, solving the incom-

pletely specified problem yields correct results if the starting point of the numerical minimization process is

close enough to the solution point. Fig. 3c illustrates this argument in a simple one-dimensional setting.

(c) Considering a vertical cut-off in cohesive frictionless soil, De Josseline De Jong (1980) concluded that

limiting equilibrium problems do not have minima (more accurately, using various formal second order

variational criteria he was not able to prove that the variational solution derived by him is a minimum). It is
noted that De Josseline De Jong considered the limiting case of a / � 0 material without introduction of a

finite tensile strength, and he did not included the classification inequalities as constraints. Based on the

present perspective it is not surprising therefore that he could not prove that his solution is a minimum. In

essence he considered an improperly defined problem, and verified that this problem does not have a so-

lution. More seriously however, he ‘‘extrapolated’’ a result obtained for a particular singular case, and

concluded that the variational approach to slope stability analysis is not valid. Such general conclusion is

not implied by his results, and the present work shows that it is, in fact, incorrect. It is important to realize

that there is nothing particularly ‘‘revolutionary’’ in the general variational formulation of slope stability
analysis. This formulation utilizes classical limiting equilibrium elements (equilibrium of a test body, and

definition of a safety factor), using variational calculus simply as a tool to identify the critical conditions.

Therefore there cannot be a ‘‘variational fallacy’’ (De Josseline De Jong, 1981), and any fallacy, if one

exists, must be a ‘‘limiting equilibrium fallacy’’. The present work verifies that the limiting equilibrium

problem does have a minimum; if a minimum exists, it can be identified by variational calculus, and there is

no fallacy (variational, or other).

(d) Space limitations prevent us from presenting a detailed discussion of the counter examples intro-

duced by Castilo and Luceno (1980, 1982). It can be verified however (Baker, 2002) that all the counter
examples discussed by them are associated with illegitimate normal stress functions. In particular, some

counter examples violate the obvious requirement rP � T . In one counter example they used a normal

stress function satisfying rðxÞ ¼ �T at number of internal points, thus implying formation of internal

tension cracks (which are inadmissible in a limiting equilibrium framework). To a large extent the present

work was motivated by an attempt to resolve the difficulties raised by those counter examples, and the

writer acknowledge the important contribution of the counter examples presented by Castillo and Luceno

to the present work.

(e) All limiting equilibrium procedures (including the variational formulation of Baker and Garber but
also the classical procedures of Morgenstern-Price, and Janbu), address essentially the same basic problem

(using different sets of ‘‘independent variables’’). The transformation between the different independent

variables is, in principle, trivial, and the present results show that the minimum exists for all slope stability

formulations, which satisfy all equilibrium requirements. It is noted however that the present results have
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no implications with respect to approximate limiting equilibrium procedures such as Fellenius (1936) or

Bishop (1955), which fail to satisfy all equilibrium conditions.

(f) The variational slope stability analysis presented by Baker and Garber (1978) was based on the method

of Lagrange�s undetermined multipliers. This method is an efficient procedure for identifying stationary
points of constrained optimization problems, but it does not provide a convenient framework for estab-

lishing the character (minimum, maximum, inflection, etc.) of these points. This feature of the Lagrange

method made it convenient to treat separately the questions of ‘‘existence of solution’’ (the present work,

which does not utilize the method of Lagrange�s multipliers), and ‘‘derivation of solution’’ (Baker and

Garber, 1978; Baker, 1981; which is based on the Lagrange method). The results of the present work show

that considering an active slope stability problem, one of the stationary points identified by the Lagrange

procedure is a minimum, and this provides the missing link to previous presentations of the approach.
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